The Economics of Crop Residues: Corn Stover

Transition to a Bioeconomy: The Role of Extension in Energy

June 30 – July 1, 2009

Little Rock, AR

Dan Petrolia

Department of Agricultural Economics

Biomass / Crop Residue

- Biomass
 - Any plant or plant-derived material
 - □ Includes anything from corn stover, forest residue, animal manure, urban waste, to "energy crops" like switchgrass and giant miscanthus
- □ Crop Residue
 - Biomass resulting as a "by-product" or crop production
- □ Corn Stover
 - Cobs, stalks, and leaves
 - U.S. produces 75 million dry tons annually
 - □ By comparison, the next most abundant source is manure (35 million dry tons annually)

Corn Stover

Land Footprint

- Corn stover to grain ratio is 1:1
 - □ 56 lbs of stover produced for every bushel of grain produced (assumes 15% moisture)
 - □ Thus, stover production estimates usually based on grain output

Stover Yields at various corn yields						
Corn Yield (bu/ac)	125	150	175			
Stover Yield (dry tons/ac)	2.9	3.5	4.1			
Harvestable Stover (dry tons/ac)*	1.0	1.2	1.4			

^{*} Assuming 34% harvest efficiency

Conversion to Ethanol

- Maximum Theoretical Yield
 - 113 gallons / dry ton of corn stover
 - Note well that this is *maximum* and *theoretical*
- □ 2002 study by DOE
 - Assumed 89.7 gal / dry ton (79% of MTY)
- Several other studies assume 70 gal / dry ton (62% of MTY)
- □ Conversion technology not yet commercially viable
 - High-cost enzymes

Harvest

- Harvest can be accomplishing using existing farm equipment
 - Tractor w/ baler, bale mover,
 - also rake, stalk shredder
- Harvest limited to about a 3-week window following grain harvest (may be longer depending on fall weather conditions)
 - Equipment may be tied up in grain harvest activities
 - Additional equipment likely needed to accommodate harvest in short window
 - Creates need for long-term storage

Storage

- Storage site needs
 - good drainage
 - Concrete or gravel surface
 - Could require covered/indoor storage if bales not wrapped in plastic

Ethanol (MM gal/yr)	25	50	100
Storage acreage req'd	238	476	952
# 10-ac storage sites	24	48	96
# of days supply per site	15	7	4

Stover Densification

- Potential to signif. reduce transportation and storage costs, improve material handling processing
- However, assuming densifying takes place at storage site (i.e., not on-farm):
 - Stover must be hauled to storage site as bales
 - No transport cost savings for this segment
 - Bales would arrive at site at rate exceeding densification
 - Would need to be stored as bales, mitigating much of potential for storage cost savings
 - Densification would improve transport efficiency to conversion facility for round bales (bulky), but not necessarily for square bales
 - Densification process not free (~\$23 / dry ton)
 - Cost savings may not outweigh cost addition

Cost of production

- □ Cost of stover delivered
 - \$76-90 per dry ton
- Assuming 70 gal / dry ton conversion rate:
 - Feedstock harvest, storage, and delivery account for
 - □ \$1.09- \$1.29 / gallon ethanol produced
 - Sensitivity analysis indicates cost to be most sensitive to assumptions on :
 - □ Bale-moisture content
 - □ Harvest efficiency
 - □ Producer participation rate (ability to harvest from a given farm/field)

Environmental Impact

- Carbon sequestration
 - I don't see a lot of difference here, but if a gallon of residuebased fuel implies a gallon reduction of fossil-based fuel, then there is potential for carbon reductions
- Erosion
 - Stover historically left in field as cover to reduce erosion
 - □ If harvested in excess of recommended levels
 - Could produce erosion problems in steeply-sloped fields
- □ Nutrients removed per ton stover
 - 6 lbs phosphate
 - 33 lbs potash

Potential of other crops

- □ Sorghum and Wheat
- □ Comparison with corn stover on potential for ethanol production
- Ethanol: carbohydrates (starch, sugar, cellulose, hemicellulose)
- □ Steam/Electricity: lignin

Comparison of corn stover to other residue feedstocks of interest.									
	Residue/Crop Ratio	Dry Matter (%)	Carbohydrates (%)	Lignin (%)	Ethanol Yield (gal/dry ton)				
Corn stover	1.0	79	58	19	69.5				
Sorghum straw	1.3	88	61	15	64.7				
Wheat straw	1.3	90	54	16	69.5				

Web links and key references

□ Useful web links for further information:

- Department of Energy's Biomass Program Information Resources, <u>http://www1.eere.energy.gov/biomass/information_resources.html</u>
- Biomass Feedstock Composition and Property Database, <u>http://www1.eere.energy.gov/biomass/information_resources.btml</u>

Key References:

- Eidman, V., D. Petrolia, L. Pham, H. Huang, and S. Ramaswamy. 2009. "The Economic Feasibility of Producing Ethanol from Corn Stover and Hardwood in Minnesota." Applied Economics Staff Paper P09-3, Univ. of Minnesota. http://ageconsearch.umn.edu/bitstream/47055/2/p09-03.pdf
- Kim, S. and B.E. Dale. 2004. "Global potential bioethanol production from wasted crops and crop residues." *Biomass & Bioenergy* 26:361-75.
- Petrolia, D.R. 2008a. "The Economics of Harvesting and Transporting Corn Stover for Conversion to Fuel Ethanol: A Case Study for Minnesota." *Biomass & Bioenergy* 32:603-12.
- Petrolia, D.R. 2008b. "An Analysis of the Relationship between Demand for Corn Stover as an Ethanol Feedstock and Soil Erosion." *Review of Agricultural Economics* 30:677-91.

Questions or Comments

□ Thank you for your time

Department of Agricultural Economics